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Abstract
Purpose: This study evaluated the performance of multivariate linear regression relative to multiple linear
regression when applied to non-normal data, with the objective of identifying the model that offers greater
accuracy and reliability under conditions of equal mean vectors and known variance–covariance matrices.
Methodology: Simulated datasets were generated using R software. Prior to estimation, all relevant
assumptions for both multivariate and multiple linear regression were tested. Model evaluation involved
examining residual symmetry, assessing the influence of independent variables on dependent variables, and
testing overall model significance. Multivariate regression performance was assessed using Pillai’s Trace, Wilks’
Lambda, Hotelling–Lawley Trace, and Roy’s Largest Root, while the multiple linear regression model was
evaluated using analysis of variance.
Results: The findings revealed that the multivariate linear regression model outperformed the multiple linear
regression model under non-normal conditions. The multivariate approach demonstrated more stable residual
behavior and stronger statistical evidence of relationships among variables, indicating superior model fit and
robustness.
Novelty and contribution: This study provides new empirical evidence on the comparative suitability of
regression models under non-normal data conditions, highlighting the superior performance of multivariate
linear regression in handling multiple dependent and independent variables simultaneously.
Practical and social implications: The results offer practical guidance for researchers, data analysts, and
policymakers in selecting appropriate analytical techniques for non-normal multivariate datasets. Improved
model selection enhances the accuracy of empirical findings and supports more reliable decision-making in
education, health, and the social sciences.
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1 Introduction
A statistical method called multivariate regression describes the relationship between the several dependent variables
(responses) and two or more independent variables (predictors) at the same time. Multivariate regression extends
the framework to account for interdependencies among multiple outcomes, unlike multiple regression, which predicts
a single outcome variable. This makes it especially helpful in domains like social sciences, economics, medicine,
engineering and business management, where variables are naturally correlated (Rencher & Christensen, 2012).
The method enables researchers to determine how explanatory variables jointly influence several variables, while also
considering the correlations among those dependent variables (Johnson & Wichern, 2007). Thereby, multivariate
regression provides more efficient parameter estimates and increases statistical power compared to running several
separate regressions especially when comparing models using non normal data.
Multivariate regression has a wide range of applications. It can be used, for instance, to examine how socioeconomic
status and instructional strategies interact to affect students’ reading and math scores. It is used in medicine to
investigate how risk variables like age, nutrition, and exercise affect a variety of health outcomes, including body
mass index, blood pressure, and cholesterol levels (Tabachnick & Fidell, 2019). To account for shared variance in
learning outcomes, for instance, student performance in science, math and reading might be jointly modelled in
education research unlike multiple linear regression where dependent variable will be modelled individually with
several independent variables.
Compared to performing independent regression for every outcome, multivariate regression offers the advantage
regression of modelling outcome variables that may be associated, which lowers error variance and provides a more
effective estimation of regression coefficients (Hair et al., 2019). Stronger presumptions, including the multivariate
normality of residuals and the homogeneity of variance – covariance matrices, are necessary, nevertheless, and must
be verified prior to use.
The aim of this article is to show the effect of the multivariate linear regression model on non normal data over the
multiple linear regression model in a situation where the mean vectors are equal and variance – covariance matrices
are known.

2 Literature Review
(Minhui, 2006) creates a new intelligent data mining and knowledge discovery method that is computationally
possible to choose the optimal subset of predictors for multivariate regression (MR) models, assuming that the
model's random error terms belong to a generic non - normal family of distributions. By combining intelligent
statistical modeling techniques based on the information-theoretic measure of complexity (ICOMP) criterion with
genetic algorithms (GA) and multivariate non-normal regression models with Power Exponential (PE) and family of
elliptically contoured (EC) error distributions, our method creates an intuitive three-way hybrid approach. EC
assumptions is demonstrated using both real and simulated data. The new method is advised for intelligent data
mining where the data do not match the conventional normal assumption and with multivariate skewed PE regression
models that can handle skewness and kurtosis simultaneously, as well as model selection issues.
(AbuElgasim, 2022) provided a logistic regression model and a multiple linear regression model based on the
presumptions of both models. Because the dependent variable is nominal, the study relied on a logistic regression
model. To determine the impact of student grades and gender, which are independent variables, on the dependent
variable of student status, it also used data from the previous year's preparatory year that was gathered from Qassim
University's College of Business and Economics. While gender has a major impact on student status, grades do not
significantly affect it, according to the study. When the logistic regression model and multiple regression model were
compared, it became clear that the logistic regression model was best suited to ascertain the relationship between
the students' grades and gender as independent variables and their status as a dependent variable. The use of
logistic regression is advised throughout the study, particularly when dealing with nominal dependent variables.
(Varsha, 2023) focuses on multivariate analysis of variance for the dataset of iris flowers, which comprises four
dependent variables and three species. Using a combination of four dependent variables, the objective is to
determine whether the flower morphology of three iris species varies. And used the Pillai's trace test since it is the
most effective choice in the event that the homogeneity of variance assumptions of the MANOVA are broken. When
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there are numerous independent and dependent variables, multivariate analysis of variance is employed. It creates a
blend that divides the independent variable groups by linearly combining several dependent variables.
(Yiming, 2023) investigates the theoretical development and model applications of multiple regression to
demonstrate the flexibility and broadness of the adoption of multiple regression analysis. Four different kinds of
regression are explored individually. Four kinds of regressions are multivariate/multiple linear regression, multivariate
multiple linear regression, multinomial logistic regression, and multivariate non-linear regression. Multivariate multiple
linear regression is more accurate than multivariate/multiple linear regression when dealing with more than a variable.
Multinomial logistic regression is relatively mature and accurate to solve the problem of non-linearity and multiple
independent variables. It does not require the variable to obey multivariate normal distribution.
(Rosa, 2015) explains that, it is typical for a single study to have several outcomes of relevance in health – related
research. Theses results are frequently examined independently, disregarding their relationship. A multivariate
technique out to be a more effective substitute for separate studies of every result. This is not always the case, which
is surprising. In the study, several settings of linear model were covered and compare the multivariate and univariate
approaches using non normal data. Demonstrates that for linear regression models, the multivariate and univariate
models’ estimates of the regression with covariates shared across the outcomes are identical, but the multivariate
model outperforms the univariate model in terms of efficiency for outcome – specific covariates.
(Johannes, 2022) proposed a new solution which is obtained by modelling the error term distribution through a finite
mixture of multi – dimensional Gaussian components. The multivariate linear regression model is studied under this
assumption. Identifiability conditions are proved and maximum likelihood estimation of the model parameters is
performed using the EM algorithim. Model selection criteria are used to determine the number of mixture
components; if this number is equal to one, the classical approach is the outcome of the proposed. Through Monte
Carlo trials, the suggested approach’s performances are assessed and constrasted with those of alternative methods.
Finally, the findings from the examination of an actual dataset are shown.

3 Materials and Methodology
Definition 1. The multivariate linear regression model �� = ���� + �� for i = 1,. . . m has � ≥ 2 response variables
��, . . , �� and predictor variables �1, �2, . . . , �� where �1 = 1 is the trivial predictor. The ith case is (��

�, ��
�) = (1,

��2, . . . , ��� , ��1 , . . , ��� ) where the 1 could be omited. The main aim of fitting multivariate model is by looking for
joint relationship of �1, �2, . . . , �� on �1, �2, . . . , ��

�1 = �(�11, �12, . . . , �1�)

�2 = �(�21, �22, . . . , �2�)

.

.

.
�� = �(�1�, �2�, . . . , ���)

And X ~ ��� − ������� �, � , X is partitioned into a a × 1 vector known as �1 and a � − � × 1 vector known as
�2

� =

�1
�2.
..

��
�� + 1
�� + 2.

..
�� + �

=
�11(� × �) �12(� × �)
�21(� × �) �22(� × �)

� � =

�1
�2.
..

��
�� + 1
�� + 2.

..
�� + �

� �1/�2 = �2 = �1 + ��1�2��2�2
−1 (�2 − �2) Equa1
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The equ1 above is conditional expectation of X1/X2 which used to fitting models involving multivariate dependent
varaiables m≥ 2 and several independent variables jointly. The equ1 can be decomposed as follows
� �1/�2 = �2 = �� – �12�22

− 1��2 + �12�22
− 1�2 Equa2

Where
�� – �12�22

− 1��2 = �� and �12�22
− 1�2 = �1

� =

�11 �12 . . . �1�
�21 �22 . . . �2�

.

..
��1

.

..
��2

. . . .

. . . .

. . . .
. . . ���

and � =

�� + 1
�� + 2.

..
�� + �

�1 − ��1 = ��11 �1 − ��1 + ��12 �2 − ��2 + . . . + ��1� �1� − ��1�

�2 − ��2 = ��21 �1 − ��1 + ��22 �2 − ��2 + . . . + ��2� �2� − ��2�

.

.

.
�1 − ��1 = ���1 �1 − ��1 + ���2 �2 − ��2 + . . . + ���� ��� − ����

So, the joint multivariate models above can be redefined as:
��1 = ��1+ �11�� + �21��2 + ��1 for i = 1, . . . , m Equ3

��2 = ��2+ �12�� + �22��2 + ��2 for i = 1, . . . , m Equ4

Where �� = ( ��1
��2

)

Then, equation 3 and 4 can be written jointly as

�� = ��1
��2

+ �11
�12

�� + �21
�22

��
2 + �� for i = 1, . . . , m Equ4i

The hypothesis Testing when Σ2 is known and when Σ2 is unknown
Ho : βo = 0 vs H1 ≠ 0 i.e under Ho,.
Test Statistic
In multivariate, there are four multivariate test statistic which are Wilks’ Lambda ∧, Pillai’s Trace Ѵ, Hotelling –
Lawley Trace Ͳ and Roy’s Largest Root Θ. Wilks’ Lambda test statistics with only Wilks’ Lambda defined below.

∧ = �11 − �12�22
− 1�21

�11

� − � − 1 − � + 1
�

∗ 1 − ∧
∧
~ �2�, 2(� − � − �)

The hypothesis will be considered insignificant if the p – value is less than α (0.05), but it will be considered
significant if the p – value greater than α (0.05). Or The hypothesis will be considered insignificant if the Test Statistic
greater than �2�, 2(� − � − �), but it will be considered otherwise if Test Statistic less than �2�, 2(� − � − �).

P – value = � Test Statistic ≥ Observed value �� = 1 − ���� �, ��1,��2

P – value = 2min [� ��1−1, �2−1 ≤ �0 , � ��1−1, �2−1 ≥ �0 ] Equa5

Definition 2. The model � = �� + �� , it is assumed that the errors are normally and independently distributed with
constant variance �2 or ��~�(0, �2�).
The normal density function for the errors is
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� �� = 1
� 2�

� − 1
2�2��

2
i = 1, 2, . . . , n Equa6

The method of MLE (Maximum Likelihood Estimation) of �1 , �2 , . . . , �� is used in estimating the parameter
coefficients of the multiple linear regression model � = �� + �� as follows
L(β, σ2) = �=1

� �(��)�

= 1

2��2
�

2
� − 1

2�2 � =1
� ��

2�

= 1

2��2
�

2
� − 1

2�2 � =1
� �'��

= 1

2��2
�

2
� − 1

2�2 � =1
� � −�� '(� − ��)� Equa7

By taking monotonic log transformation of the Equa7, we have

In L(β, σ2) = − �
2
��(2��2) − 1

2�2 � − �� '(� − ��) Equa8

Since, the interest is to obtain the coefficients of the multiple linear regression model, differentiate partially with
respect to �� and equate to zero i.e

����(�, �2)
��

= 0. Then we have

1
�2 �' � − �� = 0

� = �'� −1
(�'�) Equa9

The hypothesis Testing
Ho : βo = 0 vs H1: βo ≠ 0 i.e under Ho (Test whether all the regression coefficinent is significantly equal to zero)

Test Statistic

� =
�2

�
(1−�2

�−�−1)
Equa10

And �2 is called coefficient if determination which determine how good the model is fit.

�2 =
��'�'� − �'�

�
(�−1)��2

Equa11

The null hypothesis is rejected, if the P – value less than the significance level �(0.05) otherwise
the null hypothesis is not rejected. And the value of �2 ranges from 0 to 1. The higher �2 shows a better fit i.e more
variance explained.

P – value = 2min [� ��1−1, �2−1 ≤ �0 , � ��1−1, �2−1 ≥ �0 ]

Method of Simulation
The non normal data used for this study under multivariate linear regression model were simulated for two
dependent variables and three independent variables through gamma distribution using R – Statistical Software. The
sample size considered was n = 200 and the iteration was done hundred times i.e i = 1, 2, . . . , 100 i.e three
independent variables were generated and each was replicated 100 times.
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4 Results of Analysis for Multivariate Linear regression
Response Y1 :

Table 1 Result for residuals
Min 1Q Median 3Q Max

-5.6219 -1.1777 0.0829 1.2995 5.0789

The table 1 shows that a good model fit (no significant bias) is indicated by residuals (errors) that are approximately
symmetric arround zero.

Table 2 Coefficients
Estimate Std. Error F Pr(>|F|)

(Intercept) 3.43146 0.47113 7.284 7.73e-12
X1 1.16836 0.07301 16.003 < 2e-16
X2 -0.53680 0.04719 -11.376 < 2e-16
X3 1.93644 0.28053 6.903 6.91e-11

The regression equation is
�� = 3.43146 + 1.16836�1 − 0.53680�2 + 1.93644�3

When All X’s = 0, the predicted Y = 3.43146. Highly significant. For every 1 – unit increase in X1, increase by 1.168
when other variables are constant.Highly significant. For every 1 – unit increase in X2, Y decrease by 0.537 when
other variables are constant. Highly significant. For every 1 – unit increase in X3, Y increases by 1.936. Highly
significant.
Also, from the table all predictors and the intercept are highly significant ( P – value < 0.05)

Table 3 Results for R2 and R2adj
Std error df R2 R2adj F – statistic df p – value

1.94 196 0.6803 0.6754 139 196 < 2.2e-16

Table 3: shows the R2 (0.6803), this indicates that three independent variables account for 68.03% of the variation in
the dependent variable. Random error and other variables not included in the model account for the remaining
31.97% of variation. R2adj(0.6754) is the modified form of R2 that accounts for the model’s predictor count. Its result
shows that 67.54% of the variation is still explained, which is still rather strong and indicates that the model fits the
data well with little overfitting. The overall significance of the model is indicated by the extremely small P – value (<
2.2e-16) and the relatively high F – value (139). Consequently, a considerable portion of the variance in the
dependent variable can be explained by the predictors taken together.

Response Y2:

Table 4 Result for residuals
Min 1Q Median 3Q Max

-4.7503 -1.3497 0.1557 1.4814 5.6008

The table 4: shows that a good model fit (no significant bias) is indicated by residuals (errors) that are approximately
symmetric arround zero.
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Table 5 Coefficients
Estimate Std. Error F Pr(>|F|)

(Intercept) -0.99157 0.49903 -1.987 0.0483
X1 0.74716 0.07733 9.661 < 2e-16
X2 0.35483 0.04998 7.099 2.25e-11
X3 -1.66072 0.29715 -5.589 7.58e-08

The regression equation is
�� =− 0.99157 + 0.74716�1 + 0.35483�2 − 1.66072�3

When All X’s = 0, the predicted Y = - 0.99157. Highly significant. For every 1 – unit increase in X1, increase by 0.747
when other variables are constant.Highly significant. For every 1 – unit increase in X2, Y increases by 0.35483 when
other variables are constant. Highly significant. For every 1 – unit increase in X3, Y decreases by 1.66072 . Highly
significant.

Table 6 Results for R2 and R2adj
Std error df R2 R2adj F – statistic df p – value

2.055 196 0.4776 0.4696 59.72 196 < 2.2e-16

Table 6: shows the R2 (0.4776), this indicates that three independent variables account for 47.76% of the variation in
the dependent variable. Random error and other variables not included in the model account for the remaining
52.24% of variation. R2adj(0.4696) is the modified form of R2 that accounts for the model’s predictor count. Its result
shows that 46.96% of the variation is still explained, which is still partially strong and indicates that the model
partially fits the data well with no overfitting. The overall significance of the model is indicated by the extremely small
P – value (< 2.2e-16) and the relatively high F – value (139). Consequently, a considerable portion of the variance in
the dependent variable can be explained by the predictors taken together.

Table 7 Result for Wilks Lambda Test Statistic
df Wilks F df df Pr(>|F|)

X1 1 0.37001 166.010 2 195 < 2.2e-16
X2 1 0.52293 88.950 2 195 < 2.2e-16
X3 1 0.70594 40.613 2 195 1.799e-15

Table 7: For X1 (Wilks = 0.37001 i.e very strong multivariate effect), indicates a significant portion of the multivariate
variance may be explained by X1, For X2 (Wilks = 0.52293 i.e strong multivariate effect ), implies a significant portion
of the multivariate variance may be explained by X2 and For X3 (Wilks = 0.70594 moderate multivariate effect),
indicates a significant portion of the multivariate variance may be explained by X3. F – values (166.010, 88.950 and
40.613) implies that the group mean differ considerably across the dependent variables. Therefore, the null
hypothesis is rejected which indicates that X1, X2 and X3 have no multivariate effect on the dependent variables. A
substanstial correlation is shown by the very high F- values (166.010, 88.950, 40.613) and low Wilks Lambda
(0.37001, 0.52293 and 0.70594). Therefore, among all the three variables, X2 and X3 show the strongest multivariate
relationship with X1 showed the strongest multivariate effect.

Table 8 Result for Pillai Test Statistic
df Pilla F df df Pr(>|F|)

X1 1 0.62999 166.010 2 195 < 2.2e-16
X2 1 0.47707 88.950 2 195 < 2.2e-16
X3 1 0.29406 40.613 2 195 1.799e-15
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Table 8: For X1 (Pillai = 0.62999 indicates strongest multivariate effect), For X2 (Pillai = 0.47707 indicates stronger
multivariate effect) and For X3 (Pillai = 0.29406 indicates moderate multivariate effect). The multivariate effects of X1,
X2 and X3 on the dependent variables are statistically significant as P – values are incredibly small (<0.05). The
combination of all the dependent variables are strongly influenced by all three predictors, but X1 has the strongest
overall impact.

Table 9 Result for Hotelling Lawlet Test Statistic
df Hotelling-Lawley F df df Pr(>|F|)

X1 1 1.70266 166.010 2 195 < 2.2e-16
X2 1 0.91231 88.950 2 195 < 2.2e-16
X3 1 0.41654 40.613 2 195 1.799e-15

Table 9: For X1 (Hotelling-Lawley = 1.70266 indicates very strong multivariate effect), For X2 (Hotelling-Lawley =
0.91231 indicates strong multivariate effect) and For X3 (Hotelling-Lawley = 0.41654 indicates moderate multivariate
effect). The multivariate effects of X1, X2 and X3 on the dependent variables are statistically significant as P – values
are incredibly small (<0.05). The combination of all the dependent variables are strongly influenced by all three
predictors, but X1 has the strongest overall impact.

Table 10 Result for Roy Test Statistic
df Roy F df df Pr(>|F|)

X1 1 1.70266 166.010 2 195 < 2.2e-16
X2 1 0.91231 88.950 2 195 < 2.2e-16
X3 1 0.41654 40.613 2 195 1.799e-15

Table 10: For X1 (Roy = 1.70266 indicates very weak multivariate effect), For X2 (Roy = 0.91231 indicates weak
multivariate effect) and For X3 (Roy = 0.41654 indicates strong multivariate effect). The multivariate effects of X1, X2
and X3 on the dependent variables are statistically significant as P – values are incredibly small (<0.05). The
combination of all the dependent variables are strongly influenced by all three predictors, but X3 has the strongest
overall impact.
All multivariate tests (Pillai, Wilks Lambda, Hotelling Lawley Trace and Roy) confirm that X1, X2 and X3 are
significantly influence the dependent variables, with X3 showed the strongest overall effect and X1 showed the
weakest effect. The table 10 demonstrates that all three predictors are statistically significant, influencing the
multivariate outcome.

Result for Multiple Linear Regression Analysis
The regression equation is
��1 = 5.82 + 1.01X1 - 0.751X2 - 1.68X3

Table 11 Coefficients
Predictor Estimate Std. Error F Pr (>F)

(Intercept) 5.823 1.057 5.51 0.031
X1 1.0105 0.1597 6.33 0.024
X2 -0.7509 0.1251 -6.00 0.027
X3 -1.6777 0.7995 -2.10 0.171

Table 11: When All X’s = 0, the predicted Y = 5.823. Highly significant. For every 1 – unit increase in X1, Y increase
by 1.0105 when other variables are constant.Highly significant. For every 1 – unit increase in X2, Y decrease by
0.7509 when other variables are constant. Highly significant. For every 1 – unit increase in X3, Y deccreases by
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1.6777. Highly significant. Also, from the table all predictors and the intercept except X3 are highly significant ( P –
value < 0.05).

Table 12 Results for R2 and R2adj
STD Error R2 R2adj F P - value

0.617269 0.974 0.936 1.68909 0.0456

The table 12 shows the regression model that explains a very large proportion (97.4%) of the variation in the
outcome variable, and the model is still robust even after adjustment (93.6%). Because the model is statistically
significant (p = 0.0456), the dependent variable is significantly impacted by the predictors taken together.
Reasonably reliable forecasts are indicated by the standard error.

Table 13 Results for ANOVA (Analysis of Variance)
Source df SS MS F Pr(>F)

Regression 3 28.9050 9.6350 2440.36 0.0001
Residual Error 193 0.7620 0.003948
Total 196 29.6671

Table 13 shows the result of ANOVA. P = 0.0001 < 0.05, this indicates that there is statistcal significance in the
regression model. And this implies that variation in the dependent variable is significantly explained by the
independent factors when considered collectively. i.e a considerable amount of the variability in the dependent
variable may be jointly explained by the predictors, according to the statistically significant regression model F(3, 193)
= 2440.36, P – value = 0.0001.
The regression equation is
��2= - 0.76 + 0.470X1 + 0.546X2 - 0.56X3

Table 14 Coefficients
Estimate Std. Error F Pr (>F)

(Intercept) -0.755 4.530 -0.17 0.860
X1 0.4697 0.6843 0.69 0.410
X2 0.5462 0.5363 1.02 0.310
X3 -0.563 3.426 -0.16 0.870

Table 14: When All X’s = 0, the predicted Y = -0.755. Highly significant. For every 1 – unit increase in X1, Y increase
by 0.4697 when other variables are constant.Highly significant. For every 1 – unit increase in X2, Y increase by
0.5462 when other variables are constant. Highly significant. For every 1 – unit increase in X3, Y deccreases by 0.563.
Highly significant. Also, from the table all predictors and the intercept are highly not significant ( P – value > 0.05).

Table 15 Results for R2 and R2adj
STD Error R2 R2adj F

2.64545 0.634 0.085 2.90563

The table 15 shows the R2 (0.634), this indicates that three independent variables account for 63.4% of the variation
in the dependent variable. Random error and other variables not included in the model account for the remaining
36.6% of variation. R2adj(0.085) is the modified form of R2 that accounts for the model’s predictor count. R2adj implies
that 8.5% of the variation is still explained, which implies a strong evidence that the model fits the data well with no
overfitting. But the overall significance of the model is not indicated by the P – value (0.49817) and the relatively
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high F – value (2.90563). Consequently, a considerable portion of the variance in the dependent variable can be
explained by the predictor X3.

Table 16 Results for ANOVA (Analysis of Variance)
Source df SS MS F Pr(>F)

Regression 3 24.247 8.082 21514.84 0.000
Residual Error 193 0.0725 0.00038
Total 196 24.3195

Table 16 shows the result of ANOVA. P = 0.000 > 0.05, this indicates that there is no statistcal significance in the
regression model. And this implies that variation in the dependent variable is not significantly explained by the
independent factors when considered collectively. i.e a considerable amount of the variability in the dependent
variable may be individually explained by the predictors, according to the statistically significant regression model
F(3, 193) = 21514.84, P – value = 0.000.

5 Discussions of Findings
The findings reveals that the multivariate linear regression exhibited a strong effect on non normal data compared to
the multiple linear regression model, as it captures multiple dependent and independent variables jointly and
enhance statistical power. The methodology accounts for non normal data under the assumption of equal variance –
covariance matrices and equal mean vectors. Conversely, scenarios involving unequal variance – covariance matrices
and unequal mean vectors are not considered.
Tables 1, 4 showed the goodness of the fitted mode (no significant biass) by errors that approximately symmetric
arround zero. Table 2, 5 indicate the significance of the coefficient of the fitted models under multivariate regression,
table 3 and table 6 showed the results of coefficient of determination and adjusted coefficient of dertermination. R2
and R2adj are the determinant for the determine the significance of the fitted model and the results for the two
tables i.e tables 3 and 6 indicated that the two models under multivariate regression are fitted. Table 7, 8, 9 and 10
showed the results obtained by all multivariate tests statistic (Pillai, Wilks Lambda, Hotelling Lawley Trace and Roy)
confirm that all the three independent variables (X1, X2 and X3) are significantly influenced the dependent variable
with X1 showed the strongest overall effect. The results of table 11 shows that there is significant decrease in
predicted value for X1 and X3 and same as that of table 14. Table 12 and 15 showed that the model fit the simulated
data well with a no overfitting but with a considerable portion of variance in the dependent variable which is
explained by X3. Table 13 and 16 indicate the results obtained for ANOVA which explained that there is no significant
difference in the regression models. Therefore, the results obtained in tables 7, 8, 9 and 10 flow with (Varsha D,
2023) that focusses on multivariate analysis of variance for the dataset of iris flower which comprises four dependent
variables and three independent variables using Pillai trace test statistic. And the results of table 11 and table 14 flow
with (Yiming S, 2023), multivariate/multiple linear regression, multivariate non – linear regression performed
outrightly than multiple linear regression and multinomial logistic regression. Similarly, (Rosa O, 2015), demonstrated
that for linear regression models, the Multivariate and univariate models’ estimates of the regression parameters
associated with covariates shared across outcomes are identical, but multivariate regression models outperformed
the univariate models in terms of efficiency for outcome – specific covariate. This result flow along with the result
obtained in tables 1 – 10.

6 Conclusions
This study compared the performance of multivariate linear regression and multiple linear regression models using
non-normal data under the conditions of equal mean vectors and equal variance-cavariance matrices. Both models
were fitted, and goodness-of-fit assessments, including significance testing, were conducted to determine their
effectiveness. The findings consistently showed that the multivariate linear regression model demonstrated a stronger
capacity to handle non-normal data, providing more reliable parameter estimates and capturing interdependencies
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among variables more effectively than the multiple linear regression model. This result reinforces the analytical
advantage of multivariate approaches in complex data environments where tradtional assumptions are violated.

Implication for Theory Development
The study contributes to statistical modelling theory by providing empirical evidence that strengthens the theoretical
justification for using multivariate linear regression in situations characterized by non-normality. It supports the
expansion of existing modelling frameworks to incorporate robustness considerations, particularly when dealing with
correlated outcomes and multidimensional datasets. These findings encourage further refinement of theoretical
models that account for real-world data irregularities, promoting more flexible and inclusive statistical assumptions in
applied research.

Limitations and Future Research Direction
Despite its contributions, the study is limited by its reliance on simulated datasets, which may not capture all
complexities of real-world data. The assumption of known and equal variance-cavariance matrices may also restrict
generalizability. Future research should examine the performance of these models using empirical datasets from
different fields, explore scenarios with unequal covariance structures, and test the robustness of multivariate models
under varying sample sizes and degrees of non-normality. Additionally, comparing alternative robust regression
techniques may offer deeper insight into optimal model selection.

Ethical Consideration
In this work, a multivariate regression model with two dependent variables and three independent variables is fitted
using simulated data produced by the statistical program R. Issues with informed consent, confidentiality, or privacy
do not apply because the dataset is artificially generated and does not involve any human.
However, the assumption of non - normal data was considered. This guarantees reproducibility and makes it possible
for further researchers to confirm and expand on the findings. Additionally, the study stays away from any kind of
data modification that can provide skewed results or inaccurate model performance representations.
Moreover, the results obtained are based on simulated data and that any inferences made are merely methodological
demonstrations rather than practical applications. In compliance with academicals and ethical standards, all software
tools and R packages utilized in the analysis are appropriately acknowledged. As a result, the study complies with
the ethical, transparent, and responsible data usage guidelines for computational research.
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